If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-38-3=0
We add all the numbers together, and all the variables
13x^2-41=0
a = 13; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·13·(-41)
Δ = 2132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2132}=\sqrt{4*533}=\sqrt{4}*\sqrt{533}=2\sqrt{533}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{533}}{2*13}=\frac{0-2\sqrt{533}}{26} =-\frac{2\sqrt{533}}{26} =-\frac{\sqrt{533}}{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{533}}{2*13}=\frac{0+2\sqrt{533}}{26} =\frac{2\sqrt{533}}{26} =\frac{\sqrt{533}}{13} $
| 7y+28=40 | | 4(x−2)+16=3(x+4) | | -5(x-7)=+12 | | 89=25^x | | √2+√7n,n=7 | | N(n+1)/2,n=9 | | 4x+9x-88x=7 | | 2a²-207a+414=0 | | 4c+9/1=8c+1-(2c-11)/3 | | N^2+n-5,n=4 | | X+5=-(x+11) | | 2y+8(-2)=16 | | 6x=3(x+24) | | 15=3(x-1)-(x-9) | | 2y+8(-1)=16 | | 2y+3=22 | | (b/6)/(1/5)=19 | | 81/x^2=3x | | 6x-2=4+5 | | -2x+28=2(x+6) | | 2(4x+2)=40 | | 10x-3x-9+3-x=17+1 | | 4x(x+1)=(2x−3)(2x+5) | | 10x-3x-9+3-x=51÷3+1 | | 300=5^2x | | -5(w-2)=4w+19 | | 23h-9=6-23h | | 28x+29x=28 | | 4x-8=(4) | | 2(2x+4)+3=2x-6-3(x+1) | | x+3/12=1/6+x-4/4 | | X/14=7/2x |